S0040-4039(96)00187-6

A Complete Structural and Conformational Investigation of Procyanidin A2 Dimer

Nicolas Vivas*, Yves Glories

Laboratoire de Chimie Appliquée, Faculté d'Enologie, Université de Bordeaux II, 351 cours de la Libération 33405 Talence, France

Isabelle Pianet, Bernard Barbe

Centre d'études structurales et d'analyse des molécules organiques, associé au CNRS, Université Bordeaux I, 351 cours de la Libération 33405 Talence, France

and Michel Laguerre

Centre de Recherche Paul Pascal, CNRS, Avenue Albert Schweitzer, 33600 Pessac, France

Abstract: Structural and conformational study of A2 procyanidin is presented. By using NMR and molecular mechanics. A demonstration of the C4-C8 bond and of an additional C2-O-C7 ether linkage, characteristics of the procyanidin of A-series, was achieved.

Proanthocyanidins represent one of the major groups of plant polyphenols¹, in various proportion, in different vegetative tissues^{2,3}. The structural units are flavan-3-ols: (+)-catechin 1 and (-)-epicatechin 2. The most common and well known class of dimer procyanidins is the B-series corresponding to a dimer linked in C4-C6 or C4-C8 position⁴. The second class, less studied, is the A-series, wich corresponds to a dimer linked in the C4-C8 position with an additional C2-O-C7 ether linkage^{5,6}. Procyanidin B2 3 was chosen as a model on account the similarity of its structural units (epicatechin-(4 β - 8)-epicatechin) with A2 4 (scheme 1).

Scheme 1

A2 was isolated from the acetone-water extract (7:3, v/v) of horse chestnut seed shells (*Aesculus hyppocastanum*), after extraction with ethyl acetate, by combined LH-20 chromatography and TLC on Silicagel 60 plates. 4 represent 12% of acetone-water dry extract with 84% of purity, measured by reverse-phase HPLC. Mw of 576 (M-H)- was measued by LSISM⁹. The sample was dissolved in methanol-d3. ¹H (400.13 MHz) and ¹³C (100.61 MHz) one- and two- dimensional NMR spectra were recorded in a 5 mm tube on a Bruker DPX 400TM spectrometer using an inverse broad-band probe and gradient field. The structural analysis was performed using the following 2D NMR sequences: COSY, TOCSY, HMBC, HMQC and NOESY.

The integration of protons in the ¹H NMR spectrum shows the presence of 15 protons, all magnetically non equivalent (Table 1) (excluding protons of hydroxyl groups). This suggests that a double linkage between ring C and D was present. On the other hand, the ¹H-¹H TOCSY spectrum indicates that the C ring has lost one proton at carbon C2, since such an experiment, when the mixing time is adequately chosen (in our experiment mt = 40 ms), gives access to the entire spin system. Indeed, we clearly see a correlation between H-C3 and H-C4 alongwith a correlation between H-F2, H-F3 and the two protons of H-F4. Although the HMQC experiment permits the assignment of all the procyanidin carbons directly linked to one or two proton(s), the HMBC experiment gives access, to the interflavonoid linkage types⁷ because the visible correlations of HMBC experiments correspond to long range couplings between a given proton and a given carbon over two or three bonds. Figure 1 shows a part of the contour plot of the HMBC spectrum of 4 illustrating the linkage C4-C8 and the linkage C2-O-C7 since the proton linked to C4 (H-C4) correlates with the two carbons D7 and F8a but not with the carbon D5, and the proton linked to D6 correlates with the carbon D5. All the ¹³C chemical shifts of 4 are reported in table 2 (J measured).

Table 1- 1H and 13C NMR spectral data for 4.

Carbon number	Multiplicity	Chemical shift (d ppm)			Multiplicity	Chemical shift (d ppm)			Multiplicity Chemical shift (d ppm)		
		111	13C	Carbon number		1H	13C	Carbon number		119	13C
Ring A				Ring C				Ring E			
4a	C§	-	103.24	2	С	-	99.16	1	' с	-	130.20
5	č	-	156.02	3	C-H	4.07	66.00	2	· CH	7.18	114.92
6	C-H	6.02	97.28	4	C-H	4.43	28.26	3	' с	-	145.00
7	С		157.14					4	· c	-	144.66
8	C-H	6,08	95.47					5	' С-Н	6.83	115.00
8a	C	•	153.26					6	' С-Н	7.00	118.76
Ring B				Ring D				Ring F			
1'	С	-	131.45	4.	С	-	101.40		C-H	5.95	80.77
2'	C-H	7.15	114.60	5	č	_	151.14	3		4.26	67.09
3'	C	-	145.30	6	C-H	6.11	95.60	_	C-H2	2.78 / 2.97	28.91
4'	С	-	145.77	7	C	-	155.62			21,0,21,,	20.71
5'	C-H	6.82	114.65	8	· c	_	106.20				
6'	C-H	7.04	118.76	8a	č	-	151.31				

§ Quaternary Carbon.

An attempt was made to propose a 3D structure of 4. For that purpose we used a previous conformational study performed on procyanidin B2 (3)⁸. Starting from the conformational file, we chose the conformer with the shortest O (of D)-C2 distance; then cyclisation was performed. This minimized conformer was subjected to a Monte Carlo conformational study, using MM2* and MM3* force fields, as previously described⁹. 3000 steps were run within a 15 kJ.mole-1 energy, range resulting in 118 and 110 conformers (respectively from MM2* and MM3*). A cluster analysis conducted with Xcluster 1.1 leads to the same two families considering the torsional angles corresponding to the coupling constants measured by ¹H NMR (figure 2). The only difference is that the

equatorial family is more stable than the axial one with MM2* ($\Delta E = 5.6$ kJ.mole⁻¹); the reverse is true with MM3* ($\Delta E = 2.4$ kJ.mole⁻¹). The coupling constants measured clearly correspond to an equatorial conformer. MM2* led to the best energetic analysis (equatorial more stable than axial), but MM3* gives the best torsion angles (Table 2). So we chose the equatorial conformer obtained with MM3* as the best representation of the A2 molecule (Figure 3). The F ring was found in a half chair conformation (data not shown).

Table 2. Counting constants measured (1H NMR)	400 MHz) and calculated (MM2* and MM3* force field).
TABLE 2. COMBINE CONSIDER MEASUREM CONTRACTOR INVINC.	WAY INTELL AND CALCULATED THAT AND INTELL AND INTELL TO THE INCIDENT.

Coupling	Values (Hz)							
constance (J)	Measured	MI	/I2*	MM3*				
		eq	ax	ax	eq			
4J A6-A8	2.2							
4J B2'-B6'	2.2							
3J B5'-B6'	8.3							
3J C2-C3	3.5	4.4	4.5	3.4	3.4			
3J E2'-E6'	1.9							
3J E5'-E6'	8.1							
3J F2-F3	< 1.5	0.4	4.4	3.9	0.7			
3J F3-F4	2.2	2.9	10.7	10.9	2.1			
3J F3-F4'	4.8	3.1	5.7	5.3	4.3			
2J F4-F4'	17.1							

Figure 1- Part of the HMBC contour plot spectrum of 4. Only correlations permitting the caracterisation of interflavonoid linkage are indicated.

The NOESY experiment on 4 shows few correlations: H-B2' and H-B6', on one hand, and H-E6' and H-B6', on the other hand, exhibit dipolar coupling with H-C3 and H-F3 respectively. These results are in accordance with the modelling since the distance measured between H-C3 and H-B2' / H-B6' (2.77, 4.32 Å, respectively) and H-F3 and H-E2' / H-E6' (3.57; 3.68 Å, respectively) are small enough to observe direct spin-spin interaction. Correlation are also observable between H-C3 and H-C4 (2.50 Å) and between H-F3 and H-F4 / H-F4' (2.38; 2.59 Å, respectively), confirming the calculated structure. Contrary to the observation of Foo¹⁰ done upon type A procyanidins, no dipolar coupling was evidence between H-C4 and H-A6 or H-D6; nevertheless, such a result is in accordance with the calculated structure since those distances are too large (> 4.50 Å) in order to see such correlations (Figure 3).

Figure 2- Representation of the two leaders of the cluster analysis (a) equatorial conformation and (b) axial conformation.

Figure 3- Spatial structure of A2 procyanidin.

References

- 1. Hillis, W.E. Wood Extractives and their Significance to the Pulp and Paper Industries, Academic Press, New York, 1976.
- Haslam, E. Plant Polyphenols, Cambridge University Press, Cambridge, 1989.
- 3. Scalbert, A.; Monties, B.; Jannin, G. J. Agric. Food Chem. 1989, 37, 1324-1331.
- 4. Fletcher, A.C.; Porter, L.J.; Haslam, E.; Gupta, R.J. J. Chem. Soc. Perkin Trans. 1977, I, 1628-1637.
- Jacques, D.; Haslam, E.; Bedford, G.R.; Geatbanks, D. J. Chem. Soc. Perkin Trans. 1974, I, 2663-2671.
- 6. Pant, G.; Nautiyal, A.K.; Rawat, M.S.M.; Sutherland, J.K.; Morris, G.A. Magn. Reson. Chem. 1992, 30, S 142- S 147.
- Balas, L.; Vercauteren, J.; Laguerre, M. Magn. Reson. Chem. 1995, 33, 85; Balas, L.; Vercauteren, J. Magn. Reson. Chem. 1994, 32, 386-393.
- 8. Freitas (de), V. Recherches sur les Tanins Condensés: Application à l'Etude des Structures et Propriétés des Procyanidines du Raisin et du Vin, Thèse de l'Université de Bordeaux II, 1995, Talence, France.
- 9. Vivas, N., Laguerre, M.; Glories, Y.; Bourgeois, G.; Vitry, C. Phytochemistry, 1995, 39, 1193-1199.
- 10. Foo, L.Y. J. Chem. Soc. Commun., 1986, 236-243.

(Received in France 5 December 1995; accepted 28 January 1996)